Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Toxicol Environ Health A ; 87(11): 457-470, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38576186

RESUMEN

Glutamate is one of the predominant excitatory neurotransmitters released from the central nervous system; however, at high concentrations, this substance may induce excitotoxicity. This phenomenon is involved in numerous neuropathologies. At present, clinically available pharmacotherapeutic agents to counteract glutamatergic excitotoxicity are not completely effective; therefore, research to develop novel compounds is necessary. In this study, the main objective was to determine the pharmacotherapeutic potential of the hydroalcoholic extract of Psidium guajava (PG) in a model of oxidative stress-induced by exposure to glutamate utilizing Danio rerio larvae (zebrafish) as a model. Data showed that treatment with glutamate produced a significant increase in oxidative stress, chromatin damage, apoptosis, and locomotor dysfunction. All these effects were attenuated by pre-treatment with the classical antioxidant N-acetylcysteine (NAC). Treatment with PG inhibited oxidative stress responsible for cellular damage induced by glutamate. However, exposure to PG failed to prevent glutamate-initiated locomotor damage. Our findings suggest that under conditions of oxidative stress, PG can be considered as a promising candidate for treatment of glutamatergic excitotoxicity and consequent neurodegenerative diseases.


Asunto(s)
Psidium , Pez Cebra , Animales , Glutamatos/toxicidad , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hojas de la Planta
2.
Bull Environ Contam Toxicol ; 111(5): 62, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37903886

RESUMEN

Bentazon (Basagran®) belongs to the chemical group of benzothiadiazinones. Thus, this study aimed to estimate the influence of herbicide bentazon (3 µg.L-1, 6 µg.L-1, 12 µg.L-1, 300 µg.L-1) in Danio rerio embryos development. The study tested environmental relevant concentrations of bentazon as well as the limit established for drinking water (300 µg.L-1) in Brazil. We performed behavioral and developmental analyzes during 96 h of exposure. The bentazon measurements after experimental period showed reduction ranging from 5.0 to 18.93% between exposed groups. Our results showed significant differences in the heart rate, which was significantly higher in groups exposed to all bentazon concentrations compared to control groups. The absence of alterations in the behavioral parameters showing that the herbicide bentazon at the concentrations tested had few adverse effects on the development and behavior of the Danio rerio embryos. Considering the toxic point of view, there is a chance that bentazon acts together with other environmental contaminants as an additive or synergistic way.


Asunto(s)
Herbicidas , Contaminantes Químicos del Agua , Animales , Herbicidas/toxicidad , Pez Cebra , Benzotiadiazinas/toxicidad , Desarrollo Embrionario , Contaminantes Químicos del Agua/toxicidad , Embrión no Mamífero
3.
Artículo en Inglés | MEDLINE | ID: mdl-37201559

RESUMEN

Mancozeb is a widely used fungicide whose toxicity has been reported in non-target organisms, being considered to have high or very high acute toxicity to aquatic organisms. However, the toxicity of this compound is not well characterized in the developmental stages of fish. In this study, Danio rerio with 4-, 5-, and 6-days post fertilization (dpf) was exposed to MZ at non-lethal concentrations for 24, 48, or 72 h and subsequently, behavioral alterations, oxidative stress parameters and ERK, p38MAPK, and Akt phosphorylation were analyzed. MZ exposure during the larval period decreased motor performance evaluated by traveled distance, immobile time, and time spent in the peripheral area. In parallel, MZ induced ROS levels and increased the number of cells in apoptosis, causing severe DNA damage, inducing Acetylcholinesterase and Superoxide dismutase activities, and inhibiting Glutathione peroxidase and thioredoxin reductase. Additionally, phosphorylation levels of the proteins p38MAPK, ERK2, and Akt were stimulated. These findings are relevant considering the ecological implications of MZ exposure to fishes in different developmental stages and the role of the MAPK pathway in events like development and cell death.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/metabolismo , Fosforilación , Larva/metabolismo , Acetilcolinesterasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estrés Oxidativo , Embrión no Mamífero/metabolismo , Contaminantes Químicos del Agua/toxicidad
4.
Ecotoxicology ; 30(1): 164-174, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33196985

RESUMEN

The insecticides imidacloprid (IMI), a neonicotinoid, and propoxur (PRO), an N-methylcarbamate compound, are pesticides widely used throughout the world. Although they are not used together to combat pests, both are often found in freshwater near agricultural areas. Thereby, the goal of this study was to evaluate the additive effects of IMI and PRO mixtures at environmental concentrations in relation to isolated compounds on Rhamdia quelen, a neotropical fish. The fish was exposed to IMI (0.11 µg/L), PRO (0.039 µg/L), or Mix (0.11 µg/L IMI plus 0.039 µg/L PRO) during 96 h. Glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), acetylcholinesterase (AChE) activities were determined. To verify oxidative damage thiobarbituric acid reactive substances (TBARS), protein carbonyl (PC), reactive oxygen species contents (ROS), antioxidant capacity against peroxides (ACAP) were determined in gills, liver, brain and muscle. The results shows that a mixture of these pesticides at environmental concentrations inhibited acetylcholinesterase activity in the brain and induced oxidative damage in all analyzed tissues. These results reinforce the hypothesis that mixture of contaminants present in environment could induce additive or synergistic effects on fish species.


Asunto(s)
Bagres , Plaguicidas , Contaminantes Químicos del Agua , Animales , Catalasa/metabolismo , Bagres/metabolismo , Colinérgicos/metabolismo , Branquias/metabolismo , Glutatión Transferasa/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Plaguicidas/metabolismo , Plaguicidas/toxicidad , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad
5.
Ecotoxicol Environ Saf ; 205: 111314, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32956866

RESUMEN

Brazilian freshwater ecosystems are continuously exposed to pesticides and domestic sewage. The Uruguay River was chosen for this study because of its international importance, as it flows through Brazil, Argentina, and Uruguay. It receives contaminants such as pesticides and domestic residues. Thus, the aim of this study to assess the accumulation of pesticides in muscle of the fish Astyanax jacuhiensis, its biochemical responses, and the presence of pesticides in water. In total, seven pesticides were registered in water from both river sites. Eight pesticides were detected in fish muscle. The biochemical responses showed that brain lipid peroxidation (LPO) and protein carbonyl (PC) in A. jacuhiensis were higher in the summer. Muscle showed the highest LPO levels in the spring and the highest PC in the summer. Liver LPO and PC levels were higher in the spring and summer. In the gills, the PC was higher in the spring and the LPO in the spring and winter. In the brain and in the gills, glutathione-S-transferase activity was high in the summer and autumn. Catalase activity was lower during the winter and spring. Non-protein thiol (NPSH) levels were lower in the brain in the winter and spring. Muscle tissue showed lower NPSH in the winter (site 1). Liver NPSH showed increased levels in liver in the spring and winter (site 2). The biochemical results clearly is related to pesticides and/or to the presence of other contaminants in the water such as metals or domestic sewage. The accumulation of pesticides in fish muscle added evidence that pesticides have been used in the area surrounding the Uruguay River. In conclusion, the biomarkers assayed in the present study could be used in future investigations considering other sampling sites along Uruguay River.


Asunto(s)
Characidae/fisiología , Monitoreo del Ambiente , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores/metabolismo , Brasil , Characidae/metabolismo , Characiformes/metabolismo , Characiformes/fisiología , Ecosistema , Branquias/metabolismo , Peroxidación de Lípido , Metales/metabolismo , Plaguicidas/análisis , Ríos/química , Estaciones del Año , Contaminantes Químicos del Agua/análisis
6.
Oxid Med Cell Longev ; 2019: 9149203, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827707

RESUMEN

Permethrin (PM) is a synthetic pyrethroid insecticide widely used as domestic repellent. Damage effects to nontarget organisms have been reported, particularly in the early stages of development. Studies indicate redox unbalance as secondary PM effect. Therefore, our goal was to investigate the acute PM effects on larval zebrafish. Larvae (6 days postfertilization) were exposed to PM (25-600 µg/L) during 24 hours, and 50% lethal concentration was estimated. For subsequent assays, the sublethal PM concentrations of 25 and 50 µg/L were used. PM increased anxiety-like behaviors according to the Novel Tank and Light-Dark tests. At the molecular level, PM induced increased ROS, which may be related to the increased lipid peroxidation, DNA damage, and apoptosis detected in PM-exposed organisms. In parallel, upregulation of the antioxidant system was detected after PM exposure, with increased superoxide dismutase, glutathione S-transferase and glutathione reductase activities, and thiol levels. The increased of Nrf2 target genes and the activation of an electrophile response element-driven reporter Tg(EPRE:LUC-EGFP) suggest that the Nrf2 pathway can mediate a fast response to PM, leading to antioxidant amplification. By using high-resolution respirometry, we found that exposure to PM decreased the oxygen consumption in all respiratory stages, disrupting the oxidative phosphorylation and inhibiting the electron transfer system, leading to decrease in bioenergetics capacity. In addition, PM led to increases of residual oxygen consumption and changes in substrate control ratio. Glucose metabolism seems to be affected by PM, with increased lactate dehydrogenase and decreased citrate synthase activities. Taken together, our results demonstrated the adverse effects of acute sublethal PM concentrations during larval development in zebrafish, causing apparent mitochondrial dysfunction, indicating a potential mechanism to redox unbalance and oxidative stress, which may be linked to the detected cell death and alterations in normal behavior patterns caused by acute PM exposure.


Asunto(s)
Apoptosis/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Larva/crecimiento & desarrollo , Permetrina/farmacología , Pez Cebra/crecimiento & desarrollo , Animales , Insecticidas/farmacología , Larva/efectos de los fármacos , Larva/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra/metabolismo
7.
Neurotoxicol Teratol ; 68: 1-12, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29665402

RESUMEN

Mancozeb (MZ), a manganese/zinc-containing ethylene-bis-dithiocarbamate (EBCD) fungicide has been claimed to present low acute toxicity and short environmental persistence, however, its effects on embryogenesis in non-target organisms is unclear. Here, we used zebrafish embryos (5 hpf) to assess the potential embryotoxic effects induced by MZ (up to 72 hpf) as well as the role of reactive oxygen species (ROS) in this process by pre-treatment with a classical antioxidant (N-acetylcysteine, NAC). Markers of reactive oxygen species production (ROS), glutathione (GSH) levels and glutathione S-transferase (GST) activity were measured along with genotoxicity (comet assay), cell death (Acridine Orange) and behavioral parameters (spontaneous movement, touch stimulation and swimming response), in order to determine potential mechanisms of embryotoxicity. According to results, MZ was able to induce morphological abnormalities such as body axis distortion, DNA damage, cell death, increased ROS generation and changes in behavioral endpoints during zebrafish development. All these toxic effects were inhibited by the pre-treatment with NAC indicating a key role of redox unbalance during MZ-induced embryotoxicity. At least in our knowledge, this is the first report on the deleterious effect of MZ to the normal embryogenesis of zebrafish. In addition, the importance of ROS generation during this pathophysiological condition was highlighted.


Asunto(s)
Acetilcisteína/farmacología , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Maneb/toxicidad , Pez Cebra , Zineb/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Ensayo Cometa , Daño del ADN/efectos de los fármacos , Fungicidas Industriales/antagonistas & inhibidores , Fungicidas Industriales/toxicidad , Maneb/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Zineb/antagonistas & inhibidores
8.
Environ Sci Pollut Res Int ; 25(16): 15529-15540, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29569203

RESUMEN

Manganese (Mn)-containing dithiocarbamates such as Mancozeb (MZ) have been shown to induce oxidative stress-related toxicity in rodents and humans. However, little is known about the neurotoxic effects induced by MZ in fish. In this study, carp (Cyprinus carpio) were exposed to non-lethal waterborne concentrations of MZ, and oxidative stress parameters as well as metal accumulation in fish brains were evaluated. The experimental groups were as follows: control, MZ 5 mg/L, and MZ 10 mg/L. Fish were exposed for 7 days, and then brain was removed and prepared for subsequent analysis of antioxidant enzymes, reactive oxygen species (ROS), and expression of Nrf2 and phosphoNrf2. In parallel, manganese (Mn) levels were evaluated in blood and brain tissues. Mn levels were significantly increased in blood and brain of MZ-exposed carps. In addition, a concentration-dependent increase (p < 0.05) in ROS levels was observed in parallel to increments (p < 0.05) in the activity of major antioxidant enzymes, such as GPx, GR, and GST. On the other hand, significant decreases (p < 0.05) in CAT and SOD activities were observed. The expression of total and phosphorylated forms of Nrf2 was significantly (p < 0.05) upregulated in the brain of carps exposed to Mz when compared to the control, indicating an activation of the Nrf2 antioxidant pathway. Our study showed for the first time the activation of the Nrf2/ARE pathway and bioaccumulation of Mn induced by MZ exposure in fish species, highlighting important mechanisms of action and its toxicological impacts to aquatic organisms.


Asunto(s)
Antioxidantes/metabolismo , Carpas/metabolismo , Proteínas de Peces/genética , Maneb/toxicidad , Manganeso/metabolismo , Factor 2 Relacionado con NF-E2/genética , Contaminantes Químicos del Agua/toxicidad , Zineb/toxicidad , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Proteínas de Peces/metabolismo , Fungicidas Industriales/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo
9.
Ecotoxicol Environ Saf ; 151: 191-198, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29353169

RESUMEN

Atrazine (ATZ) is a herbicide worldwide used. That can cause oxidative damage in non-target organisms, such as fish. Furthermore, the threat of exposure to pesticides together with poor nutrition is hazardous to the normal development of fish, and supplementation of the fish diet with antioxidants compounds is an alternative approach to prevent the hazardous effects of pesticide exposure. Here we aimed to investigate the capacity of diphenyl diselenide (PhSe)2 diet supplementation to improve the antioxidant defense of Cyprinus carpio (carp) exposed to environmental concentrations of ATZ. To prove the efficiency of (PhSe)2, we used the Integrated Biomarkers Response (IBR) methodology. Therefore, carp were fed for 8 weeks diets either with or without (PhSe)2 and exposed to 2 or 10µg/L of ATZ for 96h, euthanized, and their liver, gills, and muscle tissues were removed for biochemical assays. ATZ was able to cause oxidative damage from reactive species production in all tissues of carp, as observed by the increase of lipid peroxidation and protein damage. The activity of some antioxidant enzymes was inhibited in carp exposed to ATZ. However, (PhSe)2 supplementation was able to prevent this ATZ-induced damage by improving the activities of antioxidant enzymes and through antioxidant competence of (PhSe)2per se. Furthermore, IBR was shown to be a useful tool to compare treatments, even at different concentrations, and identify the efficiently antioxidant behavior of the organoselenium compound.


Asunto(s)
Antioxidantes/farmacología , Atrazina/toxicidad , Derivados del Benceno/farmacología , Biomarcadores/metabolismo , Compuestos de Organoselenio/farmacología , Animales , Ácido Ascórbico/metabolismo , Carpas/metabolismo , Dieta/veterinaria , Branquias/efectos de los fármacos , Branquias/metabolismo , Herbicidas/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Estrés Oxidativo/efectos de los fármacos , Compuestos de Sulfhidrilo/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
10.
Oxid Med Cell Longev ; 2014: 696785, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25478063

RESUMEN

The guava fruit, Psidium guajava var. pomifera (Myrtaceae family), is a native plant from South America. Its leaves and fruits are widely used in popular medicine in tropical and subtropical countries. Drosophila melanogaster has been used as one of the main model organisms in genetic studies since the 1900s. The extensive knowledge about this species makes it one of the most suitable organisms to study many aspects of toxic compound effects. Due to the lack of studies on the effects of the bioactive compounds present in the P. guajava var. pomifera essential oil, we performed a phytochemical characterization by CG-MS and evaluated the toxicity induced by the essential oil in the D. melanogaster insect model. In order to understand the biochemical mechanisms of toxicity, changes on the Nrf2 signaling as well as hallmarks of oxidative stress response were followed in the exposed flies. Our results showed that exposure of insects to the P. guajava oil increased mortality and locomotor deficits in parallel with an oxidative stress response signaling. Therefore, it suggested a bioinsecticidal activity for P. guajava volatile compounds by means of oxidative stress. Further studies are ongoing to identify which oil compounds are responsible for such effect.


Asunto(s)
Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Myrtaceae/química , Aceites Volátiles/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Psidium/química , Animales , Femenino , Fumigación/métodos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...